Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2313623

ABSTRACT

Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , HIV Infections , HIV Protease Inhibitors , Humans , SARS-CoV-2 , HIV Protease Inhibitors/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , HIV Infections/complications , HIV Infections/drug therapy
2.
Phys Chem Chem Phys ; 25(22): 15135-15145, 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-2298777

ABSTRACT

The pandemic COVID-19 was induced by the novel coronavirus SARS-CoV-2. The virus main protease (Mpro) cleaves the coronavirus polyprotein translated from the viral RNA in the host cells. Because of its crucial role in virus replication, Mpro is a potential drug target for COVID-19 treatment. Herein, we study the interactions between Mpro and three HIV-1 protease (HIV-1 PR) inhibitors, Lopinavir (LPV), Saquinavir (SQV), Ritonavir (RIT), and an inhibitor PF-07321332, by conventional and replica exchange molecular dynamics (MD) simulations. The association/dissociation rates and the affinities of the inhibitors were estimated. The three HIV-1 PR inhibitors exhibit low affinities, while PF-07321332 has the highest affinity among these four simulated inhibitors. Based on cluster analysis, the HIV-1 PR inhibitors bind to Mpro at multiple sites, while PF-07321332 specifically binds to the catalytically activated site of Mpro. The stable and specific binding is because PF-07321332 forms multiple H-bonds to His163 and Glu166 simultaneously. The simulations suggested PF-07321332 could serve as an effective inhibitor with high affinity and shed light on the strategy of drug design and drug repositioning.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Humans , Molecular Dynamics Simulation , SARS-CoV-2 , Kinetics , COVID-19 Drug Treatment , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Molecular Docking Simulation
3.
Biomed Pharmacother ; 162: 114367, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2262376

ABSTRACT

Despite the need for novel, effective therapeutics for the COVID-19 pandemic, no curative regimen is yet available, therefore patients are forced to rely on supportive and nonspecific therapies. Some SARS-CoV-2 proteins, like the 3 C-like protease (3CLpro) or the major protease (Mpro), have been identified as promising targets for antiviral drugs. The Mpro has major a role in protein processing as well as pathogenesis of the virus, and could be a useful therapeutic target. The antiviral drug nirmatrelvir can keep SARS-CoV-2 from replicating through inhibiting Mpro. Nirmatrelvir was combined with another HIV protease inhibitor, ritonavir, to create Paxlovid (Nirmatrelvir/Ritonavir). The metabolizing enzyme cytochrome P450 3 A is inhibited by ritonavir to lengthen the half-life of nirmatrelvir, so rintonavir acts as a pharmacological enhancer. Nirmatrelvir exhibits potent antiviral activity against current coronavirus variants, despite significant alterations in the SARS-CoV-2 viral genome. Nevertheless, there are still several unanswered questions. This review summarizes the current literature on nirmatrelvir and ritonavir efficacy in treating SARS-CoV-2 infection, and also their safety and possible side effects.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Humans , Ritonavir , SARS-CoV-2 , Pandemics , COVID-19 Drug Treatment , Antiviral Agents , Peptide Hydrolases
4.
Biomed Pharmacother ; 162: 114636, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2269616

ABSTRACT

Ritonavir, originally developed as HIV protease inhibitor, is widely used as a booster in several HIV pharmacotherapy regimens and more recently in Covid-19 treatment (e.g., Paxlovid). Its boosting capacity is due to the highly potent irreversible inhibition of the cytochrome P450 (CYP) 3 A enzyme, thereby enhancing the plasma exposure to coadministered drugs metabolized by CYP3A. Typically used booster doses of ritonavir are 100-200 mg once or twice daily. This review aims to address several aspects of this booster drug, including the possibility to use lower ritonavir doses, 20 mg for instance, resulting in partial CYP3A inactivation in patients. If complete CYP3A inhibition is not needed, lower ritonavir doses could be used, thereby reducing unwanted side effects. In this context, there are contradictory reports on the actual recovery time of CYP3A activity after ritonavir discontinuation, but probably this will take at least one day. In addition to ritonavir's CYP3A inhibitory effect, it can also induce and/or inhibit other CYP enzymes and drug transporters, albeit to a lesser extent. Although ritonavir thus exhibits gene induction capacities, with respect to CYP3A activity the inhibition capacity clearly predominates. Another potent CYP3A inhibitor, the ritonavir analog cobicistat, has been reported to lack the ability to induce enzyme and transporter genes. This might result in a more favorable drug-drug interaction profile compared to ritonavir, although the actual benefit appears to be limited. Indeed, ritonavir is still the clinically most used pharmacokinetic enhancer, indicating that its side effects are well manageable, even in chronic administration regimens.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Humans , Ritonavir/pharmacology , Cytochrome P-450 CYP3A/metabolism , Pharmaceutical Preparations , COVID-19 Drug Treatment , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions
5.
JCO Precis Oncol ; 7: e2200538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2241514

ABSTRACT

PURPOSE: The introduction of COVID-19 therapies containing ritonavir has markedly expanded the scope of use for this medicine. As a strong cytochrome P450 3A4 inhibitor, the use of ritonavir is associated with a high drug interaction risk. There are currently no data to inform clinician regarding the likely magnitude and duration of interaction between ritonavir-containing COVID-19 therapies and small-molecule kinase inhibitors (KIs) in patients with cancer. METHODS: Physiologically based pharmacokinetic modeling was used to conduct virtual clinical trials with a parallel group study design in the presence and absence of ritonavir (100 mg twice daily for 5 days). The magnitude and time course of changes in KI exposure when coadministered with ritonavir was evaluated as the primary outcome. RESULTS: Dosing of ritonavir resulted in a > 2-fold increase in steady-state area under the plasma concentration-time curve and maximal concentration for six of the 10 KIs. When the KI was coadministered with ritonavir, dose reductions to between 10% and 75% of the original dose were required to achieve an area under the plasma concentration-time curve within 1.25-fold of the value in the absence of ritonavir. CONCLUSION: To our knowledge, this study provides the first data to assist clinicians' understanding of the drug interaction risk associated with administering ritonavir-containing COVID-19 therapies to patients with cancer who are currently being treated with KIs. These data may support clinicians to make more informed dosing decisions for patients with cancer undergoing treatment with KIs who require treatment with ritonavir-containing COVID-19 antiviral therapies.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Neoplasms , Humans , Ritonavir/adverse effects , HIV Protease Inhibitors/adverse effects , COVID-19 Drug Treatment , Neoplasms/drug therapy , Drug Interactions
6.
Antiviral Res ; 207: 105419, 2022 11.
Article in English | MEDLINE | ID: covidwho-2041573

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen that caused the global COVID-19 outbreak. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a key role in virus replication and has become an ideal target for antiviral drug design. In this work, we have employed bioluminescence resonance energy transfer (BRET) technology to establish a cell-based assay for screening inhibitors against SARS-CoV-2 3CLpro, and then applied the assay to screen a collection of known HIV/HCV protease inhibitors. Our results showed that the assay is capable of quantification of the cleavage efficiency of 3CLpro with good reproducibility (Z' factor is 0.59). Using the assay, we found that 9 of 26 protease inhibitors effectively inhibited the activity of SARS-CoV-2 3CLpro in a dose-dependent manner. Among them, four compounds exhibited the ability to bind to 3CLproin vitro. HCV protease inhibitor simeprevir showed the most potency against 3CLpro with an EC50 vale of 2.6 µM, bound to the active site pocket of 3CLpro in a predicted model, and importantly, exhibited a similar activity against the protease containing the mutations P132H in Omicron variants. Taken together, this work demonstrates the feasibility of using the cell-based BRET assay for screening 3CLpro inhibitors and supports the potential of simeprevir for the development of 3CLpro inhibitors.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Hepatitis C , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Reproducibility of Results , SARS-CoV-2 , Simeprevir
8.
10.
Biomolecules ; 12(7)2022 07 05.
Article in English | MEDLINE | ID: covidwho-1917277

ABSTRACT

Saquinavir was the first protease inhibitor developed for HIV therapy, and it changed the standard of treatment for this disease to a combination of drugs that ultimately led to increased survival of this otherwise deadly condition. Inhibiting the HIV protease impedes the virus from maturing and replicating. With this in mind, since the start of the COVID-19 outbreak, the research for already approved drugs (mainly antivirals) to repurpose for treatment of this disease has increased. Among the drugs tested, saquinavir showed promise in silico and in vitro in the inhibition of the SARS-CoV-2 main protease (3CLpro). Another field for saquinavir repurposing has been in anticancer treatment, in which it has shown effects in vitro and in vivo in several types of cancer, from Kaposi carcinoma to neuroblastoma, demonstrating cytotoxicity, apoptosis, inhibition of cell invasion, and improvement of radiosensibility of cancer cells. Despite the lack of follow-up in clinical trials for cancer use, there has been a renewed interest in this drug recently due to COVID-19, which shows similar pharmacological pathways and has developed superior in silico models that can be translated to oncologic research. This could help further testing and future approval of saquinavir repurposing for cancer treatment.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Neoplasms , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Saquinavir/pharmacology , Saquinavir/therapeutic use
11.
Comput Biol Med ; 145: 105523, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814279

ABSTRACT

Starting three decades ago and spreading rapidly around the world, acquired immunodeficiency syndrome (AIDS) is an infectious disease distinct from other contagious diseases by its unique ways of transmission. Over the past few decades, research into new drug compounds has been accompanied by extensive advances, and the design and manufacture of drugs that inhibit virus enzymes is one way to combat the AIDS virus. Since blocking enzyme activity can kill a pathogen or correct a metabolic imbalance, the design and use of enzyme inhibitors is a new approach against viruses. We carried out an in-depth analysis of the efficacy of atazanavir and its newly designed analogs as human immunodeficiency virus (HIV) protease inhibitors using molecular docking. The best-designed analogs were then compared with atazanavir by the molecular dynamics simulation. The most promising results were ultimately found based on the docking analysis for HIV protease. Several exhibited an estimated free binding energy lower than -9.45 kcal/mol, indicating better prediction results than the atazanavir. ATV7 inhibitor with antiviral action may be more beneficial for infected patients with HIV. Molecular dynamics analysis and binding energy also showed that the ATV7 drug had more inhibitory ability than the atazanavir drug.


Subject(s)
Atazanavir Sulfate , HIV Protease Inhibitors , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease/therapeutic use , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Molecular Docking Simulation
12.
Antiviral Res ; 202: 105311, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773103

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Animals , Cricetinae , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Lung , Mesocricetus , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , RNA, Viral , Ritonavir/therapeutic use , SARS-CoV-2
13.
J Laryngol Otol ; 135(9): 755-758, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1747302

ABSTRACT

BACKGROUND: There are significant drug-drug interactions between human immunodeficiency virus antiretroviral therapy and intranasal steroids, leading to high serum concentrations of iatrogenic steroids and subsequently Cushing's syndrome. METHOD: All articles in the literature on cases of intranasal steroid and antiretroviral therapy interactions were reviewed. Full-length manuscripts were analysed and the relevant data were extracted. RESULTS: A literature search and further cross-referencing yielded a total of seven reports on drug-drug interactions of intranasal corticosteroids and human immunodeficiency virus protease inhibitors, published between 1999 and 2019. CONCLUSION: The use of potent steroids metabolised via CYP3A4, such as fluticasone and budesonide, are not recommended for patients taking ritonavir or cobicistat. Mometasone should be used cautiously with ritonavir because of pharmacokinetic similarities to fluticasone. There was a delayed onset of symptoms in many cases, most likely due to the relatively lower systemic bioavailability of intranasal fluticasone.


Subject(s)
Adrenal Cortex Hormones/adverse effects , Cushing Syndrome/chemically induced , HIV Infections/drug therapy , HIV Protease Inhibitors/adverse effects , HIV , Administration, Intranasal , Adrenal Cortex Hormones/administration & dosage , Adult , Cobicistat/administration & dosage , Cobicistat/adverse effects , Drug Interactions , Fluticasone/administration & dosage , Fluticasone/adverse effects , HIV Protease Inhibitors/administration & dosage , Humans , Male , Ritonavir/administration & dosage , Ritonavir/adverse effects
14.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
15.
Molecules ; 26(23)2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1555019

ABSTRACT

SARS-CoV-2 is highly homologous to SARS-CoV. To date, the main protease (Mpro) of SARS-CoV-2 is regarded as an important drug target for the treatment of Coronavirus Disease 2019 (COVID-19). Some experiments confirmed that several HIV protease inhibitors present the inhibitory effects on the replication of SARS-CoV-2 by inhibiting Mpro. However, the mechanism of action has still not been studied very clearly. In this work, the interaction mechanism of four HIV protease inhibitors Darunavir (DRV), Lopinavir (LPV), Nelfinavir (NFV), and Ritonavire (RTV) targeting SARS-CoV-2 Mpro was explored by applying docking, molecular dynamics (MD) simulations, and MM-GBSA methods using the broad-spectrum antiviral drug Ribavirin (RBV) as the negative and nonspecific control. Our results revealed that LPV, RTV, and NFV have higher binding affinities with Mpro, and they all interact with catalytic residues His41 and the other two key amino acids Met49 and Met165. Pharmacophore model analysis further revealed that the aromatic ring, hydrogen bond donor, and hydrophobic group are the essential infrastructure of Mpro inhibitors. Overall, this study applied computational simulation methods to study the interaction mechanism of HIV-1 protease inhibitors with SARS-CoV-2 Mpro, and the findings provide useful insights for the development of novel anti-SARS-CoV-2 agents for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Drug Design , HIV Protease Inhibitors/chemistry , Humans , Protein Binding
17.
Crit Rev Anal Chem ; 52(8): 1846-1862, 2022.
Article in English | MEDLINE | ID: covidwho-1240847

ABSTRACT

Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Humans , Lopinavir/pharmacokinetics , Lopinavir/therapeutic use , Ritonavir/adverse effects , HIV Infections/drug therapy , HIV Infections/chemically induced , HIV Protease Inhibitors/adverse effects , Drug Compounding
18.
Curr HIV Res ; 19(4): 377-382, 2021.
Article in English | MEDLINE | ID: covidwho-1204159

ABSTRACT

BACKGROUND: The World Health Organization (WHO) announced the SARS-COV-2 disease pandemic on March 9, 2020. With the advent of this disease, another health burden was added to about 37.9 million people in the world who are infected with HIV and are suffering from various diseases. These people may be at serious risk of COVID-19. Information about the effects of COVID-19 on people living with HIV, is limited. CASE PRESENTATION: We reported a 61-year-old man who was a known case of HIV from 6 years ago that was being treated with HAART (highly active antiretroviral therapy). He also had a history of Hodgkin's lymphoma from 4 years ago who underwent autologous bone marrow transplantation (BMT) 2 weeks before given referral to our hospital. He complained of weakness, anorexia, and fever. RT-PCR for SARS-COV-2-RNA was positive in his nasopharyngeal and oropharyngeal swab. He was diagnosed with COVID-19 infection and treated with atazanavir. After one week, the patient discharged in a good general state. CONCLUSION: To the best of our knowledge, it is the first report of COVID-19 infection in an HIV positive patient after BMT in Iran. Despite his immunodeficiency, COVID-19 disease had mild manifestations and he had a good prognosis. We hope that our report and that of others can remain promising to doctors and HIV patients cross fingers for COVID-19 recovery.


Subject(s)
Atazanavir Sulfate/therapeutic use , Bone Marrow Transplantation , COVID-19 Drug Treatment , Comorbidity , HIV Infections/drug therapy , HIV Protease Inhibitors/therapeutic use , Hodgkin Disease/surgery , Humans , Iran , Male , Middle Aged , SARS-CoV-2 , Treatment Outcome
19.
J Infect Dis ; 224(Supplement_6): S631-S641, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1195718

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding receptor ACE2 and the spike protein priming protease TMPRSS2 are coexpressed in human placentae. It is unknown whether their expression is altered in the context of HIV infection and antiretroviral therapy (ART). METHODS: We compared mRNA levels of SARS-CoV-2 cell-entry mediators ACE2, TMPRSS2, and L-SIGN by quantitative polymerase chain reaction in 105 placentae: 45 from pregnant women with HIV (WHIV) on protease inhibitor (PI)-based ART, 17 from WHIV on non-PI-based ART, and 43 from HIV-uninfected women. RESULTS: ACE2 levels were lower, while L-SIGN levels were higher, in placentae from WHIV on PI-based ART compared to those on non-PI-based ART and to HIV-uninfected women. TMPRSS2 levels were similar between groups. Black race was significantly associated with lower expression of ACE2 and higher expression of L-SIGN. ACE2 levels were significantly higher in placentae of female fetuses. CONCLUSIONS: We identified pregnant women of black race and WHIV on PI-based ART to have relatively lower expression of placental ACE2 than those of white race and HIV-uninfected women. This may potentially contribute to altered susceptibility to COVID-19 in these women, favorably by reduced viral entry or detrimentally by loss of ACE2 protection against hyperinflammation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Cell Adhesion Molecules/metabolism , HIV Infections/blood , Lectins, C-Type/metabolism , Placenta/metabolism , Receptors, Cell Surface/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Adult , Angiotensin-Converting Enzyme 2/genetics , Antiretroviral Therapy, Highly Active , COVID-19/diagnosis , Case-Control Studies , Cell Adhesion Molecules/genetics , Female , HIV Infections/drug therapy , HIV Protease Inhibitors/therapeutic use , Humans , Lectins, C-Type/genetics , Pregnancy , RNA, Messenger , Real-Time Polymerase Chain Reaction , Receptors, Cell Surface/genetics
20.
J Acquir Immune Defic Syndr ; 85(2): 239-243, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1165586

ABSTRACT

BACKGROUND: The effectiveness of lopinavir/ritonavir (LPV/r) and chloroquine treatment for COVID-19 has not been verified. METHODS: We conducted a retrospective study to summarize the clinical practices of nonsevere patients with COVID-19 receiving the standard care, LPV/r or chloroquine in Beijing Ditan Hospital from January 20 to March 26, 2020. The main outcome measurements include the changes of cycle threshold values of open reading frame 1 ab (ORF1ab) and nucleocapsid (N) genes by reverse transcriptase-polymerase chain reaction assay from day 1 to 7 after admission for patients receiving standard care or after treatment being initiated for patients receiving either LPV/r or chloroquine. The proportion of developing severe illness, fever duration and the time from symptom onset to chest computer tomography improvement, and negative conversion of nucleic acid were compared. RESULTS: Of the 129 patients included in the study, 59 received the standard care, 51 received LPV/r, and 19 received chloroquine. The demographics and baseline characteristics were comparable among the 3 groups. The median duration of fever, median time from symptom onset to chest computer tomography improvement, and negative conversion of the nucleic acid were similar among the 3 groups. The median increase in cycle threshold values of N and ORF1ab gene for patients receiving LPV/r or chloroquine or the standard care during the treatment course was 7.0 and 8.5, 8.0, and 7.6, 5.0, and 4.0, respectively. These figures were not found significantly different among the 3 groups. CONCLUSIONS: Antiviral therapy using LPV/r or chloroquine seemed not to improve the prognosis or shorten the clinical course of COVID-19.


Subject(s)
Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Lopinavir/therapeutic use , Pneumonia, Viral/drug therapy , Ritonavir/therapeutic use , Adult , Antimalarials/therapeutic use , COVID-19 , Chronic Disease , Coronavirus Infections/complications , Drug Combinations , Female , Fever , HIV Protease Inhibitors/therapeutic use , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Retrospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL